Quantum magnets in motion
Published Date: 5/16/2022
Source: phys.org
The behavior of microscopic quantum magnets has long been a subject taught in lectures in theoretical physics. However, investigating the dynamics of systems that are far out of equilibrium and watching them "live" has been difficult so far. Now, researchers at the Max Planck Institute of Quantum Optics in Garching have accomplished precisely this, using a quantum gas microscope. With this tool, quantum systems can be manipulated and then imaged with such high resolution that even individual atoms are visible. The results of the experiments on linear chains of spins show that the way their orientation propagates corresponds to the so-called Kardar-Parisi-Zhang superdiffusion. This confirms a conjecture that recently emerged from theoretical considerations.