Non-invasive imaging of atomic arrangement at the sub-angstrom scale in 2-D hybrid perovskites
Published Date: 5/11/2022
Source: phys.org
Materials scientists aim to identify the atomic arrangement of 2D Ruddlesden-Popper hybrid perovskites (RPP) using non-invasive imaging; however, the process is challenging due to the insulating nature and softness of the organic layers. In a new report now published in Science Advances, Mykola Telychko, Shayan Edaltmanesh, and Kai Leng, and a team of scientists in physics, chemistry, and materials at the National University of Singapore, and Palacky University Czech Republic, demonstrated sub-angstrom resolution imaging of soft organic layers and inorganic frameworks in a two-dimensional lead-halide perovskite crystal. The team accomplished this using scanning tunneling microscopy and noncontact atomic force microscopy supported with theoretical simulations. The scanning tunneling microscopy results unveiled the atomic reconstruction of the inorganic lead-halide lattice and composition of the crystal, while atomic force microscopy provided undisputed visualization of the materials surface and bonding interactions with the inorganic lattice. The joint method allowed the scientists to obtain atomic scale imaging and electrostatic potential of the material to reveal alternative quasi 1-D electron and hole channels at the neighboring twin boundaries.