Scientists use cooperative action of a ligand-counterion system for sustainable ether production
Published Date: 3/28/2022
Source: phys.org
The continued development of pharmaceuticals depends on the ability to form a wide range of chemical bonds. Diaryl ethers, characterized by the presence of an oxygen atom connected to two aryl groups, are a class of organic compounds with a broad range of applications, notably as a refrigerant and an antiseptic for preventing infections. In particular, diaryl ethers have been a topic of research interest as their organic synthesis has proved difficult. They can be formed from aryl-alcohols, or phenols, when a second aryl group replaces the alcoholic hydrogen. But current phenol O-arylation methods are inefficient and makes use of rare transition metal catalysts (notably the palladium catalyzed cross-coupling reaction won the 2010 Nobel Prize in Chemistry). In addition, they are unselective, meaning many different side products are generated, reducing the efficiency and final yield of the desired organic compound.