Novel carbon-coated bimetallic catalyst for in-situ aqueous phase hydrodeoxygenation
Published Date: 11/29/2021
Source: phys.org
The excessive consumption of fossil fuels causes serious energy and environment issues. As an ideal alternative to fossil fuels, renewable biomass can be converted to fuels and chemicals. Thereinto, lipids, mainly containing 16 and 18 carbons in fatty acids, are very suitable for preparing diesel-like hydrocarbons via hydrodeoxygenation. The traditional hydrodeoxygenation is carried out under external hydrogen supply at a high-pressure. However, there is a potential safety problem in the transportation and storage of H2. Moreover, commercial H2 is mainly produced from fossil resources. Recently, the in-situ hydrogen supply through the aqueous phase reforming has attracted great attention. To achieve this, a challenge is to design the catalysts with high resistance to sintering and leaching under harsh hydrothermal condition. Now, the researchers at Tianjin University have designed a carbon-coated metallic catalyst, which is published online in Frontiers of Chemical Science and Engineering on September 23, 2021.