Extremely strong nano-twinned pure nickel with extremely fine twin thickness
Published Date: 9/1/2021
Source: phys.org
In a new report on Science Advances, Fenghui Duan and a research team in China detailed continuous strengthening in nanotwinned pure Nickel materials. The material recorded an unprecedented strength of 4.0 GPa at extremely fine twin thickness, 12 times stronger than that of conventional coarse-grained Nickel. Theories suggest diverse mechanisms of softening nanograined metals. Continuous strengthening can occur in nanotwinned metals with extremely fine twin thickness to realize ultrahigh strength. It is challenging to experimentally verify this hypothesis while regulating the synthesis of nanotwinned metals with a thickness below 10 nm. In this work, the team developed columnar grained nanotwinned nickel with twin thickness ranging from 2.9 to 81 nm, using direct current electrodeposition to show the process of continuous strengthening. Duan et al. used transmission electron microscopy (TEM) to reveal the attributes of strengthening and credited the outcomes to the fine-spaced architecture of the material.