A superluminous supernova from a massive progenitor star
Published Date: 4/23/2021
Source: phys.org
Stars greater than about eight solar-masses end their lives spectacularly as supernovae. These single-star supernovae are called core collapse supernovae because their dense cores, composed primarily of iron at this late stage of their lives, are no longer able to withstand the inward pressure of gravity and they collapse before exploding. Core collapse supernovae that display strong atomic hydrogen emission lines are thought to result from the explosions of red supergiant stars, massive stars that have evolved beyond their principle hydrogen burning stage and swelled in radius. Until recently, astronomers thought these stars were relatively quiescent until their final demise, but evidence has been accumulating that they actually experience strong mass loss before exploding. In some models, additional radiation is emitted when ejecta from the supernovae encounter these mass loss envelopes in shocks, and variations in this process are responsible for the observed differences in the emission from core collapse supernovae.