High-resolution, terahertz-driven atom probe tomography
Published Date: 2/23/2021
Source: phys.org
Materials scientists must be able to exert ultrafast control of matter using a strong electromagnetic field on the atomic scale to understand the ionization dynamics and excitations in solids. Researchers can couple picosecond duration terahertz pulses to metallic nanostructures to generate extremely localized and intense electric fields. In a new report now on Science Advances, Angela Vella and a research team at the CNRS and the University Institute of France controlled field ion emission across from metallic nanotips. The terahertz near-field induced an athermal ultrafast evaporation of surface atoms as ions on the subpicosecond timescale with the tip acting as a field amplifier. The ultrafast terahertz-ion interaction offered unprecedented control on ultrafast free-ion pulses to image, analyze and manipulate matter at atomic scales. In this work, Vella et al. demonstrated terahertz atom probe microscopy as a new platform for microscopy with atomic and chemical resolution.