Electrophotocatalytic diamination of vicinal C–H bonds
Published Date: 2/22/2021
Source: phys.org
In organic chemistry, the conversion of inactivated carbon-hydrogen (C-H) bonds to carbon-nitrogen (C-N) bonds is a highly valued transformation. Scientists can accomplish such reactions at only a single C-H site since the first derivatization can diminish the reactivity of the surrounding C-H bonds. In a new report now published in Science, Tao Shen and Tristan H. Lambert at the department of chemistry and chemical biology, Cornell University, New York, showed that alkylated arenes could undergo vicinal C-H diamination reactions to form 1,2-diamine derivatives using an electrophotocatalytic strategy. During the synthetic process, they used acetonitrile as a solvent and nitrogen source. They catalyzed the reaction using a trisaminocyclopropenium (TAC) ion, which underwent anodic oxidation to furnish a stable radical dication (any cation), while the cathodic reaction reduced protons to molecular hydrogen. When they irradiated the TAC radical dication with a white-light compact fluorescent light, they generated a strongly oxidizing photoexcited intermediate. Based on the electrolyte used, the team obtained either 3,4-dihydroimidazole or aziridine products.