Nanoscopy through a plasmonic nanolens
Published Date: 1/28/2020
Source: phys.org
Imaging at the scale of a single molecule has gained much recent research interest in diverse fields of molecular biology, physics and nanotechnology. Researchers have used super-resolution microscopy to access subdiffraction resolution, but the technique does not apply for plasmonic nanoparticle dimer structures that form intense areas of field enhancement also known as plasmonic hot spots, due to plasmonic coupling (interaction between two or more plasmonic particles) and the loss of positional information. In a recent study, Matthew J. Horton and a team of interdisciplinary researchers in the NanoPhotonics Centre at the University of Cambridge, Blackett Laboratory at the Imperial College of London, and the School of Physics and Astronomy at the University of Birmingham, U.K., reconstructed the locations of molecules within a plasmonic hotspot with 1-nm precision.